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SOLUTION TO PROBLEM SET 9
Solutions by P. Pebler

1 Purcell 5.3 A beam of 9.5 MeV electrons (γ = 20) amounting as current to 0.05 µA, is traveling
through vacuum. The transverse dimensions of the beam are less than 1 mm, and there are no
positive charges in or near it. In the lab frame, what is approximately the electric field strength
1 cm away from the beam, and what is the average distance between the electrons, measured parallel
to the beam? Answer the same questions for the electron rest frame.

With γ = 20, the speed of the electrons will be essentially c. The number of electrons passing
per second is

νe =
0.05× 10−6 A

1.6× 10−19 C
= 3.1× 1011 1/s .

The mean distance between electrons is

d =
c

νe
= 1 mm ,

and the charge per unit length is

λ = −4.8× 10−10 esu

0.1 cm
= −4.8× 10−9 esu/cm .

If we think of this as a continuous line charge, the field strength a distance 1 cm away is

E = −2λ
r

= 9.6× 10−9 statvolt/cm .

Since the electrons are moving, the distance between them will be contracted. Therefore, in the
electron rest frame, they will be more spread out so that

d′ = γd = 2 cm .

We might find a new field strength by

E′ =
E

γ
= 4.8× 10−10 statvolt/cm ,

however, this will be only the average field strength along a line parallel to the beam. Since the
electrons are so far apart in this frame, there will be big variation in the field.

2 Purcell 5.7 A moving proton has γ = 1010. How far away from such a proton would the field
rise to 1 V/m as it passes?

The electric field strength of a moving point charge is (in SI units)

E′ =
Q

4πεor′2
1− β2

(1− β2 sin2 θ′)3/2
.

The maximum field strength is directly beside the particle where θ′ = π/2. Then

E′ =
Q

4πεor′2
1√

1− β2
= γ

Q

4πεor′2
.
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We want the distance where the field is 1 V/m.

1010(1.6× 10−19 C)
4π(8.85× 10−12 C2/Nm2)r′2

= 1 V/m

r′ = 3.8 m

3 Purcell 5.10 In the rest frame of a particle with charge q1 another particle with charge q2
is approaching, moving with velocity v not small compared with c. If it continues to move in a
straight line, it will pass a distance d from the position of the first particle. It is so massive that
its displacement from the straight path during the encounter is small compared with d. Likewise,
the first particle is so massive that its displacement from its initial position is small compared with
d. Show that the increment in momentum acquired by each particle as a result of the encounter is
perpendicular to v and has magnitude 2q1q2/vd. Expressed in terms of other quantities, how large
must the masses of the particles be to justify our assumptions?

In the first approximation, we consider the trajectory to be a straight line. For this trajectory,
the net impulse in the x direction will be zero. Using cylindrical coordinates,

∆pr =
∫
Frdt =

1
v

∫
Fr dx =

q2
2πdv

∫
Er2πd dx .

The purpose of transforming this integral in this way is so that it becomes the electric flux through
an infinite cylinder of radius d. We can evaluate it easily by using Gauss’s law.

∆pr =
q2

2πdv

∫
E · da =

q2
2πdv

4πq1 =
2q1q2
dv

In the rest frame of q2, the situation is reversed, and q1 acquires the same y momentum in the op-
posite direction. This will be the same momentum in the rest frame of q1 because the perpendicular
component of the momentum is unchanged by a Lorentz transformation.

For this approximation to be good, the acquired y momentum must be much smaller than the
x momentum, so that

γmv � 2q1q2
dv

,

where m can represent either mass.

4 Purcell 5.17 Two protons are moving parallel to one another a distance r apart, with the same
velocity βc in the lab frame. At the instantaneous position of one of the protons the electric field
strength caused by the other is γe/r2. But the force on the proton measured in the lab frame is not
γe2/r2. Verify that by finding the force in the proton rest frame and transforming that force back to
the lab frame. Show that the discrepancy can be accounted for if there is a magnetic field β times
as strong as the electric field, accompanying this proton as it travels through the lab frame.

2



In the rest frame of the protons, the force is e2/r2. In the lab frame this force is

Fy =
1
γ

e2

r2
= γ

e2

r2
+ F (b)

y ,

where the first term is the electric force in the lab frame. The extra term is

F (b)
y = γ

e2

r2

(
1
γ2

− 1
)
= −γβ2 e

2

r2
= −

(
βγ

e

r2

)
e
v

c
.

From the Lorentz force law

F = eE +
e

c
v × B ,

we can account for this extra force with a magnetic field out of the page

B = βE ẑ .

5 Purcell 6.4 A long wire is bent into the hairpin like shape shown. find an exact expression for
the magnetic field at the point P which lies at the center of the half-circle.

In the integral for the magnetic field of an infinite wire, each half of the wire contributes the
same amount in the same direction, so for each of the half wires, we can take half of the formula
for an infinite wire. Also, the half circle will contribute half of the ring formula. All contributions
point out of the page so

Bz =
1
2
2πI
cb

+
1
2
2I
cb

+
1
2
2I
cb

=
(2 + π)I

bc
.

6 Purcell 6.14 A coil is wound evenly on a torus of rectangular cross section. There are N turns
of wire in all. Assume that the current on the surface of the torus flows exactly radially on the
annular end faces, and exactly longitudinally on the inner and outer cylindrical surfaces. Show that
the magnetic field everywhere would be circumferential. Second, prove that the field is zero at all
points outside the torus, including the interior of the central hole. Third, find the magnitude of the
field inside the torus as a function of radius.

We set a coordinate system so the point P under consideration is in the z − x plane with
coordinates (xo, 0, zo). Consider a current loop at an angle φ from the x axis. One small section of
the loop has coordinates (r cosφ, r sinφ, z) and

r = (xo − r cosφ,−r sinφ, zo − z) .

3



The direction of this little current is arbitrary within the plane so the current direction vector can
be written

I = Ir r̂ + Iz ẑ = (Ir cosφ, Ir sinφ, Iz) .

Then the contribution to the magnetic field will be in the direction

I × r = [sinφ(Ir(zo − z) + rIz)] x̂ + [Iz(xo − r cosφ)− Ir cosφ(zo − z)] ŷ − Irxo sinφ ẑ .

However, for each section of current, there is a similar section that is identical except that φ → −φ.
We see that the x and z components change sign. Therefore, these components cancel out and the
net field at the point P is in the y direction. For our coordinate system, this in the circumferential
direction.

Once we have this information, it is easy to use Ampere’s law.
∫

B · dl = 2πrB =
4π
c
NI

B =
2NI

cr
a < r < b

If we are outside the solenoid, the enclosed current will be zero and so the field is zero.

7 Purcell 6.18 Two long coaxial aluminum cylinders are charged to a potential difference of
50 statvolts. The inner cylinder has an outer diameter of 6 cm, the outer cylinder an inner
diameter of 8 cm. With the outer cylinder stationary the inner cylinder is rotated around its axis
at a constant frequency of 30 Hz. Describe the magnetic field this produces and determine its
intensity in gauss. What if both cylinders are rotated in the same direction at 30 Hz?

The capacitance for two coaxial cylinders is

C =
L

2 ln(b/a)
.

Assuming we have equal amounts of positive and negative charge on the inside and outside respec-
tively, we can find the charge per unit length.

Q

L
=

CV

L
=

V

2 ln(b/a)
= 87 esu/cm

The spinning charged cylinders are essentially perfect solenoids. The field of a long solenoid is
constant inside and practically zero outside. The solenoid formula is

B =
4πIn
c

,

where n is the number of turns per unit length. The quantity nI can be thought of as the charge
per unit time per unit length passing through a line running parallel to the cylinder. You should
be able to convince yourself that this quantity in our case is Qν/L, where ν is the frequency of
revolution. With just the inner cylinder rotating with ν = 30 Hz,

B =
4πQν
cL

=
4π(87 esu/cm)(30 Hz)

3× 1010 cm/s
= 1.1× 10−6 gauss r < a ,

and the field elsewhere is zero. With a clockwise rotation as shown, the field is into the page.
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If the outer cylinder rotates in the same direction, it will produce a field with the same magnitude
but opposite direction. These two fields will cancel for r < a, but for a < r < b, the field is
1.1× 10−6 gauss out of the page. It is zero again for r > b.

8 Purcell 6.22 A constant B field lies in the y−z plane. An arbitrary current loop lies in the x−y
plane. Show, by calculating the torque about the x axis, that the torque on the current loop can be
written N = m×B, where the magnetic moment m of the loop is defined as a vector of magnitude
IA/c where I is the current in esu/s and a is the area of the loop in cm2, and the direction of the
vector is normal to the loop with a right-hand relation to the current. What about the net force on
the loop?

The force on a small section of loop is

dF =
1
c
Idl × B .

Only the part of the force in the z direction will contribute to the torque about the x axis. We
split the magnetic field into two parts in the z and y directions. dl × (Bz ẑ) is in the x − y plane,
so we only need the y part of B.

dFz =
1
c
IBy sin θ dl

From the figure we see that dl sin θ = dx so that dFz = 1
c IBy dx and the torque is

Nx =
∫
y dFz =

1
c
IBy

∫
loop

y(x) dx .

This integral if we go forward along the top of the loop and back along the bottom is the area of
the loop and

Nx =
1
c
IBya .

With m = Ia/c and pointing in the −z direction,

m × B = m × (Byŷ) = mByx̂ =
1
c
IBya x̂ .

For a constant field there is no net force because

F =
∫
dF =

∫ 1
c
I dl × B = −1

c
IB ×

∫
dl

and
∫
dl around the loop is zero.
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